Заголовок:
Комментарий:
Готово, можно копировать.
РЕШУ ЦТ — математика ЦЭ
Вариант № 116
1.  
i

На ри­сун­ках 1 и 2 изоб­ра­же­ны пра­виль­ная тре­уголь­ная приз­ма ABCA1B1C1 и ее раз­верт­ка. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти приз­мы, если длина ло­ма­ной ACA1 равна 3 ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та и точки A, C, A1 лежат на одной пря­мой (см. рис. 2).

Рис. 1

Рис. 2

1) 9 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
2) 36
3) 18 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та
4) 18
5) 18 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
2.  
i

На ри­сун­ке изоб­ра­жен тре­уголь­ник ABC, в ко­то­ром ∠ACB  =  38°, ∠AMN  =  109°. Ис­поль­зуя дан­ные ри­сун­ка, най­ди­те гра­дус­ную меру угла BAC.

1) 33°
2) 52°
3) 26°
4) 30°
5) 60°
3.  
i

Ис­поль­зуя ри­су­нок, опре­де­ли­те вер­ное утвер­жде­ние и ука­жи­те его номер.

1)  минус 3k мень­ше минус 3t
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: t конец дроби боль­ше дробь: чис­ли­тель: 1, зна­ме­на­тель: k конец дроби
3) 3k боль­ше 3t
4)  дробь: чис­ли­тель: k, зна­ме­на­тель: минус 3 конец дроби боль­ше дробь: чис­ли­тель: t, зна­ме­на­тель: минус 3 конец дроби
5) k боль­ше t
4.  
i

Среди чисел −7; −11; 11; −1; 0 ука­жи­те то, ко­то­рое не мень­ше −9 и не боль­ше −2.

1) −7
2) −11
3) 11
4) −1
5) 0
5.  
i

Вы­чис­ли­те  дробь: чис­ли­тель: 3732 умно­жить на 0,01 минус 5, зна­ме­на­тель: 0,47 плюс 1,13 конец дроби .

1) 20,2
2) 2,2
3) 2,02
4) 22
5) 202
6.  
i

За n ко­ро­бок кон­фет было за­пла­че­но 152 руб. 20 коп., а за n ко­ро­бок пе­че­нья  — b руб. Со­ставь­те вы­ра­же­ние, ко­то­рое опре­де­ля­ет, на сколь­ко ко­пе­ек ко­роб­ка пе­че­нья де­шев­ле ко­роб­ки кон­фет.

1)  дробь: чис­ли­тель: 152,2 минус b, зна­ме­на­тель: n конец дроби
2)  дробь: чис­ли­тель: 15220 минус 100b, зна­ме­на­тель: n конец дроби
3)  дробь: чис­ли­тель: 152,2 минус b, зна­ме­на­тель: 100n конец дроби
4)  дробь: чис­ли­тель: 15220 плюс 100b, зна­ме­на­тель: n конец дроби
5)  дробь: чис­ли­тель: левая круг­лая скоб­ка 152,2 минус b пра­вая круг­лая скоб­ка n, зна­ме­на­тель: 100 конец дроби
7.  
i

На ри­сун­ке a || b, \angle1=68 гра­ду­сов, \angle2=\angle3. Най­ди­те гра­дус­ную меру угла 4.

1) 34°
2) 68°
3) 22°
4) 56°
5) 35°
8.  
i

Най­ди­те сумму всех целых зна­че­ний функ­ции y  =  f(x), за­дан­ной гра­фи­ком на про­ме­жут­ке (-5; 5) (см.рис.).

1) 12
2) 14
3) 7
4) 10
5) 11
9.  
i

Ре­зуль­тат упро­ще­ния вы­ра­же­ния  дробь: чис­ли­тель: a в квад­ра­те плюс 5a, зна­ме­на­тель: a плюс 3 конец дроби плюс дробь: чис­ли­тель: 6a, зна­ме­на­тель: a в квад­ра­те плюс 3a конец дроби имеет вид:

1) a минус 2
2)  дробь: чис­ли­тель: левая круг­лая скоб­ка a минус 2 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка a минус 3 пра­вая круг­лая скоб­ка , зна­ме­на­тель: a плюс 3 конец дроби
3)  дробь: чис­ли­тель: a в квад­ра­те плюс 11a, зна­ме­на­тель: a в квад­ра­те плюс 4a плюс 3 конец дроби
4)  дробь: чис­ли­тель: a в квад­ра­те плюс 8a плюс 33, зна­ме­на­тель: 3 левая круг­лая скоб­ка a плюс 3 пра­вая круг­лая скоб­ка конец дроби
5) a плюс 2
10.  
i

Най­ди­те наи­боль­шее на­ту­раль­ное дву­знач­ное число, ко­то­рое при де­ле­нии на 11 дает в остат­ке 7.

1) 18
2) 95
3) 99
4) 97
5) 92
11.  
i

На диа­грам­ме по­ка­за­но ко­ли­че­ство по­се­ще­ний сайта на про­тя­же­нии не­де­ли (со втор­ни­ка по вос­кре­се­нье). Уста­но­ви­те со­от­вет­ствие между во­про­са­ми А−В и от­ве­та­ми 1−6.

ВО­ПРОС

A)  В какой день не­де­ли было на 20 по­се­ще­ний боль­ше, чем в преды­ду­щий?

Б)  В какой день не­де­ли ко­ли­че­ство по­се­ще­ний было на 35% мень­ше, чем во втор­ник?

B)  В какой день не­де­ли ко­ли­че­ство по­се­ще­ний было на 10% боль­ше, чем в преды­ду­щий?

ОТВЕТ

1)  Втор­ник

2)  Среда

3)  Чет­верг

4)  Пят­ни­ца

5)  Суб­бо­та

6)  Вос­кре­се­нье

 

Ответ за­пи­ши­те в виде со­че­та­ния букв и цифр, со­блю­дая ал­фа­вит­ную по­сле­до­ва­тель­ность букв ле­во­го столб­ца. Пом­ни­те, что не­ко­то­рые дан­ные пра­во­го столб­ца могут ис­поль­зо­вать­ся не­сколь­ко раз или не ис­поль­зо­вать­ся во­об­ще. На­при­мер: А1Б1В4.

12.  
i

Вы­бе­ри­те три вер­ных утвер­жде­ния:

1)  если  ко­си­нус левая круг­лая скоб­ка арк­ко­си­нус a пра­вая круг­лая скоб­ка = ко­си­нус левая круг­лая скоб­ка арк­ко­си­нус дробь: чис­ли­тель: 1, зна­ме­на­тель: 18 конец дроби пра­вая круг­лая скоб­ка , то a= дробь: чис­ли­тель: 1, зна­ме­на­тель: 18 конец дроби ;

2)  если  ко­си­нус альфа = минус ко­си­нус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 18 конец дроби , то  арк­ко­си­нус левая круг­лая скоб­ка ко­си­нус альфа пра­вая круг­лая скоб­ка = минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 18 конец дроби ;

3)  если  синус альфа = синус дробь: чис­ли­тель: 17 Пи , зна­ме­на­тель: 18 конец дроби , то  арк­си­нус левая круг­лая скоб­ка синус альфа пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 17 Пи , зна­ме­на­тель: 18 конец дроби ;

4)  если  арк­ко­си­нус a= дробь: чис­ли­тель: Пи , зна­ме­на­тель: 18 конец дроби , то a= ко­си­нус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 18 конец дроби ;

5)  если  синус альфа = синус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 18 конец дроби , то  альфа = минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 18 конец дроби ;

6)  если  синус альфа = синус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 18 конец дроби , то  арк­си­нус левая круг­лая скоб­ка синус альфа пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: Пи , зна­ме­на­тель: 18 конец дроби .

 

Ответ за­пи­ши­те циф­ра­ми (по­ря­док за­пи­си цифр не имеет зна­че­ния). На­при­мер: 123.

13.  
i

Ос­но­ва­ние ост­ро­уголь­но­го рав­но­бед­рен­но­го тре­уголь­ни­ка равно 10, а синус про­ти­во­по­лож­но­го ос­но­ва­нию угла равен 0,6. Най­ди­те пло­щадь тре­уголь­ни­ка.

14.  
i

По углам пря­мо­уголь­ной пла­сти­ны с пе­ри­мет­ром 448 см вы­ре­за­ли че­ты­ре оди­на­ко­вых квад­ра­та (см. рис.) с дли­ной сто­ро­ны, рав­ной 12 см. Края по­лу­чен­ной за­го­тов­ки за­гну­ли по ли­ни­ям 1−4 и по­лу­чи­ли ко­роб­ку в форме пря­мо­уголь­но­го па­рал­ле­ле­пи­пе­да объ­е­мом 48 дм3. Най­ди­те пло­щадь пря­мо­уголь­ной пла­сти­ны (в дм2).

15.  
i

Най­ди­те (в гра­ду­сах) наи­мень­ший ко­рень урав­не­ния 4 минус 18 синус дробь: чис­ли­тель: 5x, зна­ме­на­тель: 4 конец дроби умно­жить на ко­си­нус дробь: чис­ли­тель: 5x, зна­ме­на­тель: 4 конец дроби = ко­си­нус дробь: чис­ли­тель: 8 Пи , зна­ме­на­тель: 3 конец дроби на про­ме­жут­ке (−180°; 0°).

16.  
i

Пло­щадь пря­мо­уголь­ни­ка ABCD равна 20. Точки M, N, P, Q  — се­ре­ди­ны его сто­рон. Най­ди­те пло­щадь че­ты­рех­уголь­ни­ка между пря­мы­ми AN, BP, CQ, DM.

17.  
i

Най­ди­те сумму всех целых ре­ше­ний не­ра­вен­ства  ло­га­рифм по ос­но­ва­нию 7 левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка умно­жить на ло­га­рифм по ос­но­ва­нию 7 левая круг­лая скоб­ка x минус 7 пра­вая круг­лая скоб­ка мень­ше или равно ло­га­рифм по ос­но­ва­нию 7 левая круг­лая скоб­ка x в квад­ра­те минус 6x минус 7 пра­вая круг­лая скоб­ка минус 1.

18.  
i

Най­ди­те сумму квад­ра­тов кор­ней урав­не­ния 8 ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те плюс 10x минус 9 конец ар­гу­мен­та =9 минус 10x минус x в квад­ра­те .

19.  
i

Най­ди­те (в гра­ду­сах) сумму кор­ней урав­не­ния  синус 2x= ко­си­нус в сте­пе­ни 4 дробь: чис­ли­тель: x, зна­ме­на­тель: 2 конец дроби минус синус в сте­пе­ни 4 дробь: чис­ли­тель: x, зна­ме­на­тель: 2 конец дроби на про­ме­жут­ке [−223°; 333°].

20.  
i

Из точки А про­ве­де­ны к окруж­но­сти ра­ди­у­сом  дробь: чис­ли­тель: 4, зна­ме­на­тель: 3 конец дроби ка­са­тель­ная AB (B  — точка ка­са­ния) и се­ку­щая, про­хо­дя­щая через центр окруж­но­сти и пе­ре­се­ка­ю­щая ее в точ­ках D и C (AD < AC). Най­ди­те пло­щадь S тре­уголь­ни­ка ABC, если длина от­рез­ка AC в 3 раза боль­ше длины от­рез­ка ка­са­тель­ной. В ответ за­пи­ши­те зна­че­ние вы­ра­же­ния 5S.

21.  
i

Двое ра­бо­чих вы­пол­ня­ют не­ко­то­рую ра­бо­ту. Сна­ча­ла пер­вый ра­бо­тал  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби часть вре­ме­ни, за ко­то­рое вто­рой вы­пол­ня­ет всю ра­бо­ту. Затем вто­рой ра­бо­тал  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби часть вре­ме­ни, за ко­то­рое пер­вый за­кон­чил бы остав­шу­ю­ся ра­бо­ту. Оба они вы­пол­ни­ли толь­ко  дробь: чис­ли­тель: 11, зна­ме­на­тель: 18 конец дроби всей ра­бо­ты. Сколь­ко часов по­тре­бу­ет­ся ра­бо­че­му с мень­шей про­из­во­ди­тель­но­стью для вы­пол­не­ния этой ра­бо­ты, если из­вест­но, что при сов­мест­ной ра­бо­те они сде­ла­ют ее за 3 ч 36 мин?

22.  
i

ABCDA1B1C1D1  — пря­мая че­ты­рех­уголь­ная приз­ма, объем ко­то­рой равен 960. Ос­но­ва­ни­ем приз­мы яв­ля­ет­ся па­рал­ле­ло­грамм ABCD. Точки M и N при­над­ле­жат реб­рам A1D1 и С1D1, так что A1M : A1D1 = 1 : 2, D1N : NC1 = 2 : 1. От­рез­ки A1N и B1M пе­ре­се­ка­ют­ся в точке K. Най­ди­те объем пи­ра­ми­ды SB1KNC1, если S при­над­ле­жит B_1D и B1S : SD = 3 : 1.

23.  
i

От­ре­зок BD яв­ля­ет­ся бис­сек­три­сой тре­уголь­ни­ка АВС, в ко­то­ром  дробь: чис­ли­тель: BC, зна­ме­на­тель: AB конец дроби = дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби и  дробь: чис­ли­тель: BC, зна­ме­на­тель: AC конец дроби = дробь: чис­ли­тель: 5, зна­ме­на­тель: 12 конец дроби . По от­рез­ку из точек В и D од­но­вре­мен­но нав­стре­чу друг другу с по­сто­ян­ны­ми и не­рав­ны­ми ско­ро­стя­ми на­ча­ли дви­же­ние два тела, ко­то­рые встре­ти­лись в точке пе­ре­се­че­ния бис­сек­трис тре­уголь­ни­ка АВС и про­дол­жи­ли дви­же­ние, не меняя на­прав­ле­ния и ско­ро­сти. Пер­вое тело до­стиг­ло точки D на 1 ми­ну­ту 14 се­кунд рань­ше, чем вто­рое до­стиг­ло точки В. За сколь­ко се­кунд вто­рое тело про­шло весь путь от точки D до точки В?

24.  
i

Ос­но­ва­ни­ем пи­ра­ми­ды SABCD яв­ля­ет­ся вы­пук­лый че­ты­рех­уголь­ник ABCD, диа­го­на­ли АС и BD ко­то­ро­го пер­пен­ди­ку­ляр­ны и пе­ре­се­ка­ют­ся в точке O, АО  =  9, ОС  =  16, ВО  =  OD  =  12. Вер­ши­на S пи­ра­ми­ды SABCD уда­ле­на на рас­сто­я­ние  дробь: чис­ли­тель: 61, зна­ме­на­тель: 7 конец дроби от каж­дой из пря­мых AB, BC, СD и AD. Через се­ре­ди­ну вы­со­ты пи­ра­ми­ды SABCD па­рал­лель­но ее ос­но­ва­нию про­ве­де­на се­ку­щая плос­кость, ко­то­рая делит пи­ра­ми­ду на две части. Най­ди­те зна­че­ние вы­ра­же­ния 10 · V, где V  — объем боль­шей из ча­стей.

25.  
i

Най­ди­те сумму кор­ней (ко­рень, если он един­ствен­ный) урав­не­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 8x в квад­ра­те минус 18x плюс 5 конец ар­гу­мен­та = x минус 1. В ответ за­пи­ши­те по­лу­чен­ный ре­зуль­тат, уве­ли­чен­ный в 14 раз.

26.  
i

В боль­шой круг шара впи­сан тре­уголь­ник, длина одной из сто­рон ко­то­ро­го равна 6, а про­ти­во­ле­жа­щий этой сто­ро­не угол равен 120°. Най­ди­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та умно­жить на V, зна­ме­на­тель: Пи конец дроби , где V  — объем шара.

27.  
i

Най­ди­те (в гра­ду­сах) сумму раз­лич­ных кор­ней урав­не­ния  синус в квад­ра­те дробь: чис­ли­тель: 3 x, зна­ме­на­тель: 2 конец дроби минус ко­си­нус в квад­ра­те дробь: чис­ли­тель: 3 x, зна­ме­на­тель: 2 конец дроби =1 на про­ме­жут­ке  левая квад­рат­ная скоб­ка минус 365 в сте­пе­ни левая круг­лая скоб­ка \circ пра­вая круг­лая скоб­ка ; минус 45 в сте­пе­ни левая круг­лая скоб­ка \circ пра­вая круг­лая скоб­ка пра­вая квад­рат­ная скоб­ка .

28.  
i

Най­ди­те про­из­ве­де­ние кор­ней урав­не­ния  3 ко­рень 4 сте­пе­ни из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус 17 конец ар­гу­мен­та плюс ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус 17 конец ар­гу­мен­та =40.

29.  
i

При де­ле­нии не­ко­то­ро­го на­ту­раль­но­го дву­знач­но­го числа на сумму его цифр не­пол­ное част­ное равно 6, а оста­ток равен 7. Если цифры дан­но­го числа по­ме­нять ме­ста­ми и по­лу­чен­ное число раз­де­лить на сумму его цифр, то не­пол­ное част­ное будет равно 4, а оста­ток будет равен 6. Най­ди­те ис­ход­ное число.

30.  
i

Ос­но­ва­ни­ем че­ты­рех­уголь­ной пи­ра­ми­ды яв­ля­ет­ся ромб, у ко­то­ро­го ко­си­нус угла равен  дробь: чис­ли­тель: 7, зна­ме­на­тель: 8 конец дроби и длина сто­ро­ны равна 8. Все бо­ко­вые грани пи­ра­ми­ды на­кло­не­ны к плос­ко­сти ее ос­но­ва­ния под углом α, а вы­со­та пи­ра­ми­ды равна 18. Най­ди­те зна­че­ние вы­ра­же­ния 2 ко­рень из: на­ча­ло ар­гу­мен­та: 15 конец ар­гу­мен­та умно­жить на тан­генс альфа .